If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33x^2-50x=8
We move all terms to the left:
33x^2-50x-(8)=0
a = 33; b = -50; c = -8;
Δ = b2-4ac
Δ = -502-4·33·(-8)
Δ = 3556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3556}=\sqrt{4*889}=\sqrt{4}*\sqrt{889}=2\sqrt{889}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{889}}{2*33}=\frac{50-2\sqrt{889}}{66} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{889}}{2*33}=\frac{50+2\sqrt{889}}{66} $
| b+3.7=6.4 | | v-44=31 | | 4.1=c-2.4 | | c-5=236 | | 14x-7=9x+3 | | p-79=7 | | 6(v+3)=-3v-9 | | -6.7=k/4 | | c+14c-8=-7 | | -4.9x^2+30x+25=0 | | -1/4+5=-x | | W-3=4/w | | y/4=-4.3 | | 5=19-q | | 6.1n=61 | | y/5+4=-16 | | 5m-3m+1=5 | | 2.8v=-30.8 | | p+5.2=5.8 | | r+56=68 | | -10=5.5+r | | r=9+(-4)+4 | | n+15=38 | | u-(-4)/4=3 | | n+15=28 | | 6=4.4+h | | 4(q+11)-18=2 | | x+5.2=5.8 | | 19h-17h=16 | | -40.5=4.5x | | 8+m=13.7 | | 7-1+t=32 |